Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 324
Filter
1.
Ren Fail ; 46(1): 2334396, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38570195

ABSTRACT

OBJECTIVES: Calcium oxalate (CaOx) crystal deposition in acute kidney injury (AKI) patients is under recognized but impacts renal outcomes. This study investigates its determinants and effects. METHODS: We studied 814 AKI patients with native kidney biopsies from 2011 to 2020, identifying CaOx crystal deposition severity (mild: <5, moderate: 5-10, severe: >10 crystals per section). We assessed factors like urinary oxalate, citrate, urate, electrolytes, pH, tubular calcification index, and SLC26A6 expression, comparing them with creatinine-matched AKI controls without oxalosis. We analyzed how these factors relate to CaOx severity and their impact on renal recovery (eGFR < 15 mL/min/1.73 m2 at 3-month follow-up). RESULTS: CaOx crystal deposition was found in 3.9% of the AKI cohort (32 cases), with 72% due to nephrotoxic medication-induced tubulointerstitial nephritis. Diuretic use, higher urinary oxalate-to-citrate ratio induced by hypocitraturia, and tubular calcification index were significant contributors to moderate and/or severe CaOx deposition. Poor baseline renal function, low urinary chloride, high uric acid and urea nitrogen, tubular SLC26A6 overexpression, and glomerular sclerosis were also associated with moderate-to-severe CaOx deposition. Kidney recovery was delayed, with 43.8%, 31.2%, and 18.8% of patients having eGFR < 15 mL/min/1.73 m2 at 4, 12, and 24-week post-injury. Poor outcomes were linked to high urinary α1-microglobulin-to-creatinine (α1-MG/C) ratios and active tubular injury scores. Univariate analysis showed a strong link between this ratio and poor renal outcomes, independent of oxalosis severity. CONCLUSIONS: In AKI, CaOx deposition is common despite declining GFR. Factors worsening tubular injury, not just oxalate-to-citrate ratios, are key to understanding impaired renal recovery.


Subject(s)
Acute Kidney Injury , Calcinosis , Hyperoxaluria , Humans , Calcium Oxalate/chemistry , Creatinine/metabolism , Kidney/pathology , Hyperoxaluria/complications , Oxalates/metabolism , Acute Kidney Injury/pathology , Citrates/metabolism , Citric Acid
2.
BMC Nephrol ; 25(1): 106, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500054

ABSTRACT

A 75-year-old male developed acute kidney injury KDIGO stage 3 a few weeks after Whipple surgery was performed for a distal cholangiocarcinoma. Kidney biopsy revealed oxalate nephropathy. This was attributed to post-Whipple malabsorption, poor compliance with pancreatic enzyme replacement therapy, and daily intake of vitamin C supplements. Pancreatic enzyme replacement therapy was resumed and calcium carbonate initiated, with an improvement in glomerular filtration rate. Unfortunately, due to oncological progression, best supportive care was initiated.We review the pathophysiology and conditions predisposing to secondary hyperoxaluria and oxalate nephropathy. This diagnosis should be considered among the main causes of acute kidney injury following pancreatectomy, with important therapeutic implications.


Subject(s)
Acute Kidney Injury , Hyperoxaluria , Male , Humans , Aged , Pancreaticoduodenectomy/adverse effects , Hyperoxaluria/complications , Acute Kidney Injury/diagnosis , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Oxalates
3.
J Bras Nefrol ; 46(1): 99-106, 2024.
Article in English, Portuguese | MEDLINE | ID: mdl-38427579

ABSTRACT

We present a case of a 69-year-old man who presented for routine check-up and was incidentally found to have kidney failure with an initially unrevealing history and bland urinary sediment. He was diagnosed with oxalate nephropathy in the setting of chronic turmeric supplementation and chronic antibiotic therapy with associated diarrhea. Our case provides several key insights into oxalate nephropathy. First, the diagnosis requires a high index of clinical suspicion. It is uncommonly suspected clinically unless there is an obvious clue in the history such as Roux-en-Y gastric bypass or ethylene glycol poisoning. Diagnosis can be confirmed by histopathologic findings and corroborated by serum levels of oxalate and 24-hour urinary excretion. Second, the diagnosis can often be missed by the pathologist because of the characteristics of the crystals unless the renal pathologist has made it a rule to examine routinely all H&E sections under polarized light. This must be done on H&E, as the other stains dissolve the crystals. Third, one oxalate crystal in a routine needle biopsy is considered pathologic and potentially contributing to the AKI or to the CKD in an important way. Fourth, secondary oxalosis can be largely mitigated or prevented in many cases, especially iatrogenic cases. This can come through the surgeon or the gastroenterologist providing proper instructions to patients on an oxalate-restricted diet or other specific dietary measures. Lastly, this case highlights the success that results from cooperation and communication between the pathologist and the treating physician.


Subject(s)
Hyperoxaluria , Renal Insufficiency , Male , Humans , Aged , Curcuma , Hyperoxaluria/chemically induced , Hyperoxaluria/complications , Renal Insufficiency/complications , Oxalates , Dietary Supplements/adverse effects
4.
Mayo Clin Proc ; 99(4): 593-606, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38310502

ABSTRACT

OBJECTIVE: To report the clinicopathologic characteristics, prognostic indicators, prognosis, and transplant outcome of secondary oxalate nephropathy (ON). PATIENTS AND METHODS: We performed a retrospective analysis of 113 consecutive patients with secondary ON diagnosed at Mayo Clinic in Rochester, Minnesota, between January 1, 2001, and March 1, 2023. RESULTS: The incidence of secondary ON among all native biopsies from Mayo Clinic patients over the study period (n=11,617) was 0.97%. ON was attributed to enteric hyperoxaluria in 60% of the 113 patients (68; most commonly Roux-en-Y gastric bypass), excessive ingestion of foods high in oxalate or oxalate precursors in 23% (26) (most commonly vitamin C), and idiopathic in 17% (19). Most patients presented with acute kidney injury (AKI) (particularly in the ingestion group) or AKI on chronic kidney disease, and 53% (60 of 113) were diabetic. Calcium oxalate crystals were accompanied by acute tubular injury, inflammation, and interstitial fibrosis and tubular atrophy. Concurrent pathologic conditions were present in 53% of the patients (60 of 113), most commonly diabetic nephropathy. After a median follow-up of 36 months, 27% of the patients (30 of 112) had kidney recovery, 19% (21 of 112) had persistent kidney dysfunction, 54% (61 of 112) had development of kidney failure, and 29% (32 of 112) died. The mean kidney survival was worse for patients with a concurrent pathologic lesion (30 months vs 96 months for those without a concurrent pathologic lesion; P<.001). Independent predictors of kidney failure were the degree of interstitial fibrosis and tubular atrophy and nadir estimated glomerular filtration rate but not the degree of crystal deposition. After a median follow-up of 58 months in 23 patients who received kidney transplant, 4 had graft loss (due to ON in 3). The 2-, 5-, and 10-year graft survivals were 90% (18 of 20), 79% (11 of 14), and 50% (6 of 12). CONCLUSION: ON is a rare cause of AKI or AKI on chronic kidney disease. Most patients have comorbid pathologic conditions, particularly diabetic nephropathy, which worsen the prognosis. Recurrence in the renal allograft and graft loss may occur if hyperoxaluria is not controlled.


Subject(s)
Acute Kidney Injury , Diabetic Nephropathies , Hyperoxaluria , Kidney Transplantation , Renal Insufficiency, Chronic , Humans , Kidney Transplantation/adverse effects , Diabetic Nephropathies/complications , Retrospective Studies , Hyperoxaluria/complications , Hyperoxaluria/epidemiology , Acute Kidney Injury/etiology , Acute Kidney Injury/complications , Oxalates , Renal Insufficiency, Chronic/complications , Fibrosis , Atrophy/complications
5.
Nephrology (Carlton) ; 29(4): 201-213, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38290500

ABSTRACT

BACKGROUND: Primary hyperoxaluria type 1 (PH1) is characterized by increased endogenous oxalate production and deposition as calcium oxalate crystals. The main manifestations are nephrocalcinosis/nephrolithiasis, causing impaired kidney function. We aimed to evaluate the clinical characteristics and overall outcomes of paediatric PH1 patients in Turkey. METHODS: This is a nationwide, multicentre, retrospective study evaluating all available paediatric PH1 patients from 15 different paediatric nephrology centres in Turkey. Detailed patient data was collected which included demographic, clinical and laboratory features. Patients were classified according to their age and characteristics at presentation: patients presenting in the first year of life with nephrocalcinosis/nephrolithiasis (infantile oxalosis, Group 1), cases with recurrent nephrolithiasis diagnosed during childhood (childhood-onset PH1, Group 2), and asymptomatic children diagnosed with family screening (Group 3). RESULTS: Forty-eight patients had a mutation consistent with PH1. The most common mutation was c.971_972delTG (25%). Infantile oxalosis patients had more advanced chronic kidney disease (CKD) or kidney failure necessitating dialysis (76.9% vs. 45.5%). These patients had much worse clinical course and mortality rates seemed to be higher (23.1% vs. 13.6%). Patients with fatal outcomes were the ones with significant comorbidities, especially with cardiovascular involvement. Patients in Group 3 were followed with better outcomes, with no kidney failure or mortality. CONCLUSION: PH1 is not an isolated kidney disease but a systemic disease. Family screening helps to preserve kidney function and prevent systemic complications. Despite all efforts made with traditional treatment methods including transplantation, our results show devastating outcomes or mortality.


Subject(s)
Hyperoxaluria, Primary , Hyperoxaluria , Kidney Failure, Chronic , Nephrocalcinosis , Nephrolithiasis , Renal Insufficiency , Humans , Child , Nephrocalcinosis/diagnosis , Nephrocalcinosis/epidemiology , Nephrocalcinosis/etiology , Retrospective Studies , Kidney Failure, Chronic/complications , Renal Dialysis/adverse effects , Hyperoxaluria, Primary/complications , Hyperoxaluria, Primary/diagnosis , Hyperoxaluria, Primary/genetics , Nephrolithiasis/complications , Nephrolithiasis/diagnosis , Nephrolithiasis/genetics , Hyperoxaluria/complications
6.
Nutrients ; 16(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38257157

ABSTRACT

Nephrolithiasis is a common urologic manifestation of Crohn's disease. The purpose of this study was to investigate the clinical characteristics, intestinal oxalate absorption, and risk factors for urinary stone formation in these patients. In total, 27 patients with Crohn's disease and 27 healthy subjects were included in the present study. Anthropometric, clinical, and 24 h urinary parameters were determined, and the [13C2]oxalate absorption test was performed. Among all patients, 18 had undergone ileal resection, 9 of whom had a history of urinary stones. Compared to healthy controls, the urinary excretion values of calcium, magnesium, potassium, sulfate, creatinine, and citrate were significantly lower in patients with Crohn's disease. Intestinal oxalate absorption, the fractional and 24 h urinary oxalate excretion, and the risk of calcium oxalate stone formation were significantly higher in patients with urolithiasis than in patients without urolithiasis or in healthy controls. Regardless of the group, between 83% and 96% of the [13C2]oxalate was detected in the urine within the first 12 h after ingestion. The length of ileum resection correlated significantly with the intestinal absorption and urinary excretion of oxalate. These findings suggest that enteric hyperoxaluria can be attributed to the hyperabsorption of oxalate following extensive ileal resection. Oral supplementation of calcium and magnesium, as well as alkali citrate therapy, should be considered as treatment options for urolithiasis.


Subject(s)
Crohn Disease , Hyperoxaluria , Urinary Calculi , Urolithiasis , Humans , Oxalates , Crohn Disease/complications , Crohn Disease/surgery , Calcium , Magnesium , Urinary Calculi/etiology , Urolithiasis/etiology , Hyperoxaluria/complications , Calcium, Dietary , Citrates , Citric Acid
8.
R I Med J (2013) ; 106(11): 14-19, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38015779

ABSTRACT

Hyperoxaluria is a clinically relevant metabolic entity that portends a high morbidity burden. Primarily manifesting as kidney stone disease and chronic kidney disease, advanced hyperoxaluria can also affect major organs, including the brain, heart, liver, bone, and the skin. It is categorized based on etiology into primary and secondary hyperoxaluria. Pathology is attributed to excess de novo oxalate production in the former and multifactorial exogenous oxalate absorption or excess intake of its precursors in the latter. Diagnosis often involves demonstrating elevated urinary oxalate levels, especially in patients with normal kidney function. Here in this review, we will perform an in-depth discussion of various causes of hyperoxaluria and describe treatment options. In view of the significant morbidity burden associated with hyperoxaluria, patients could benefit from heightened clinician awareness to aid in the timely diagnosis and management of this condition.


Subject(s)
Hyperoxaluria , Kidney Calculi , Humans , Kidney Calculi/etiology , Kidney Calculi/urine , Hyperoxaluria/complications , Hyperoxaluria/diagnosis , Oxalates/metabolism
9.
Cell Cycle ; 22(17): 1884-1899, 2023 09.
Article in English | MEDLINE | ID: mdl-37592762

ABSTRACT

Nephrolithiasis is a common and frequently-occurring disease in the urinary system with high recurrence. The present study aimed to explore the protective effect and underlying mechanism of hydroxycitric acid (HCA) in hyperoxaluria-induced nephrolithiasis in vitro and in vivo. Crystal deposition and pathophysiological injury in rat models of glyoxylate-induced nephrolithiasis were examined using H&E staining. Cell models of nephrolithiasis were established by oxalate-treated renal tubular epithelial cells. The levels of oxidative stress indexes were determined by ELISA kits. Cell proliferation in vivo and in vitro was evaluated using a cell counting kit-8 (CCK-8) assay and Ki-67 cell proliferation detection kit. Cell apoptosis was measured by flow cytometry and TUNEL staining. The protein levels were examined by western blotting. Our results showed that HCA administration significantly reduced crystal deposition and kidney injury induced by glyoxylate. HCA also alleviated oxidative stress via upregulating the antioxidant enzyme activities of superoxide dismutase (SOD) and catalase (CAT) and reducing the malondialdehyde (MDA) content. Moreover, HCA treatment promoted cell proliferation and inhibited apoptosis of renal tubular epithelial cells exposed to hyperoxaluria. Of note, Nrf2 activator dimethyl fumarate (DMF) exerted the same beneficial effects as HCA in nephrolithiasis. Mechanistically, HCA prevented crystal deposition and oxidative stress induced by hyperoxaluria through targeting the Nrf2/Keap1 antioxidant defense pathway, while knockdown of Nrf2 significantly abrogated these effects. Taken together, HCA exhibited antioxidation and anti-apoptosis activities in nephrolithiasis induced by hyperoxaluria via activating Nrf2/Keap1 pathway, suggesting that it may be an effective therapeutic agent for the prevention and treatment of nephrolithiasis.


Subject(s)
Hyperoxaluria , Nephrolithiasis , Rats , Animals , Antioxidants/pharmacology , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Nephrolithiasis/drug therapy , Nephrolithiasis/metabolism , Oxidative Stress , Hyperoxaluria/complications , Hyperoxaluria/drug therapy , Hyperoxaluria/metabolism , Signal Transduction , Glyoxylates/pharmacology , Glyoxylates/therapeutic use
10.
BMC Nephrol ; 24(1): 207, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37443012

ABSTRACT

BACKGROUND: The kidney is particularly vulnerable to toxins due to its abundant blood supply, active tubular reabsorption, and medullary interstitial concentration. Currently, calcium phosphate-induced and calcium oxalate-induced nephropathies are the most common crystalline nephropathies. Hyperoxaluria may lead to kidney stones and progressive kidney disease due to calcium oxalate deposition leading to oxalate nephropathy. Hyperoxaluria can be primary or secondary. Primary hyperoxaluria is an autosomal recessive disease that usually develops in childhood, whereas secondary hyperoxaluria is observed following excessive oxalate intake or reduced excretion, with no difference in age of onset. Oxalate nephropathy may be overlooked, and the diagnosis is often delayed or missed owning to the physician's inadequate awareness of its etiology and pathogenesis. Herein, we discuss the pathogenesis of hyperoxaluria with two case reports, and our report may be helpful to make appropriate treatment plans in clinical settings in the future. CASE PRESENTATION: We report two cases of acute kidney injury, which were considered to be due to oxalate nephropathy in the setting of purslane (portulaca oleracea) ingestion. The two patients were elderly and presented with oliguria, nausea, vomiting, and clinical manifestations of acute kidney injury requiring renal replacement therapy. One patient underwent an ultrasound-guided renal biopsy, which showed acute tubulointerstitial injury and partial tubular oxalate deposition. Both patients underwent hemodialysis and were discharged following improvement in creatinine levels. CONCLUSIONS: Our report illustrates two cases of acute oxalate nephropathy in the setting of high dietary consumption of purslane. If a renal biopsy shows calcium oxalate crystals and acute tubular injury, oxalate nephropathy should be considered and the secondary causes of hyperoxaluria should be eliminated.


Subject(s)
Acute Kidney Injury , Hyperoxaluria , Portulaca , Humans , Aged , Calcium Oxalate , Hyperoxaluria/complications , Oxalates/adverse effects , Acute Kidney Injury/chemically induced , Acute Kidney Injury/diagnosis , Acute Disease
11.
BMC Nephrol ; 24(1): 189, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37370009

ABSTRACT

Oxalate nephropathy, due to secondary hyperoxaluria has widely been described in gastrointestinal diseases. However, reports of oxalate nephropathy in newly diagnosed celiac disease are rare. A 72-year-old Caucasian male presented to the hospital with abdominal discomfort and acute renal insufficiency with a creatinine of 290 µmol/L. The clinical course, laboratory results and urinalysis were suspect for tubular injury. Renal biopsy showed calcium oxalate depositions. Elevated plasma and urine oxalate levels established the diagnosis oxalate nephropathy. The abdominal complaints with steatorrhea and positive anti-tissue transglutaminase antibodies were diagnosed as celiac disease, which was confirmed after duodenal biopsies. Treatment with prednisone, and gluten-free, low oxalate and normal calcium diet, lowered the plasma oxalate levels and improved his renal function. Decreased absorption of free fatty acids can lead to increased free oxalate in the colon due to the binding of free fatty acids to calcium, preventing the formation of the less absorbable calcium oxalate in the colon. Oxalate dispositions in the kidney can lead to acute tubular injury and chronic renal insufficiency. Celiac disease is therefore one of the intestinal diseases that can lead to hyperoxaluria and oxalate nephropathy.


Subject(s)
Acute Kidney Injury , Celiac Disease , Hyperoxaluria , Humans , Male , Aged , Calcium Oxalate/urine , Celiac Disease/complications , Celiac Disease/diagnosis , Calcium , Fatty Acids, Nonesterified , Hyperoxaluria/complications , Hyperoxaluria/diagnosis , Acute Kidney Injury/etiology , Acute Kidney Injury/complications , Oxalates
12.
Clin J Am Soc Nephrol ; 18(12): 1637-1644, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37342976

ABSTRACT

Enteric hyperoxaluria is a medical condition characterized by elevated urinary oxalate excretion due to increased gastrointestinal oxalate absorption. Causative features include fat malabsorption and/or increased intestinal permeability to oxalate. Enteric hyperoxaluria has long been known to cause nephrolithiasis and nephrocalcinosis, and, more recently, an association with CKD and kidney failure has been shown. Currently, there are no US Food and Drug Administration-approved therapies for enteric hyperoxaluria, and it is unclear what end points should be used to evaluate the efficacy of new drugs and biologics for this condition. This study represents work of a multidisciplinary group convened by the Kidney Health Initiative to review the evidence supporting potential end points for clinical trials in enteric hyperoxaluria. A potential clinical outcome is symptomatic kidney stone events. Potential surrogate end points include ( 1 ) an irreversible loss of kidney function as a surrogate for progression to kidney failure, ( 2 ) asymptomatic kidney stone growth/new stone formation observed on imaging as a surrogate for symptomatic kidney stone events, ( 3 ) urinary oxalate and urinary calcium oxalate supersaturation as surrogates for the development of symptomatic kidney stone events, and ( 4) plasma oxalate as a surrogate for the development of the clinical manifestations of systemic oxalosis. Unfortunately, because of gaps in the data, this Kidney Health Initiative workgroup was unable to provide definitive recommendations. Work is underway to obtain robust information that can be used to inform trial design and medical product development in this space.


Subject(s)
Hyperoxaluria , Kidney Calculi , Renal Insufficiency , Humans , Hyperoxaluria/complications , Hyperoxaluria/therapy , Oxalates/urine , Kidney Calculi/etiology , Calcium Oxalate/urine , Renal Insufficiency/complications
13.
Sci Rep ; 13(1): 9029, 2023 06 03.
Article in English | MEDLINE | ID: mdl-37270618

ABSTRACT

The risk of enteric hyperoxaluria is significantly increased after malabsorptive bariatric surgery (MBS). However, its underlying determinants are only poorly characterized. In this case-control study, we aimed at identifying clinical and genetic factors to dissect their individual contributions to the development of post-surgical hyperoxaluria. We determined the prevalence of hyperoxaluria and nephrolithiasis after MBS by 24-h urine samples and clinical questionnaires at our obesity center. Both hyperoxaluric and non-hyperoxaluric patients were screened for sequence variations in known and candidate genes implicated in hyperoxaluria (AGXT, GRHPR, HOGA1, SLC26A1, SLC26A6, SLC26A7) by targeted next generation sequencing (tNGS). The cohort comprised 67 patients, 49 females (73%) and 18 males (27%). While hyperoxaluria was found in 29 patients (43%), only one patient reported postprocedural nephrolithiasis within 41 months of follow-up. Upon tNGS, we did not find a difference regarding the burden of (rare) variants between hyperoxaluric and non-hyperoxaluric patients. However, patients with hyperoxaluria showed significantly greater weight loss accompanied by markers of intestinal malabsorption compared to non-hyperoxaluric controls. While enteric hyperoxaluria is very common after MBS, genetic variation of known hyperoxaluria genes contributes little to its pathogenesis. In contrast, the degree of postsurgical weight loss and levels of malabsorption parameters may allow for predicting the risk of enteric hyperoxaluria and consecutive kidney stone formation.


Subject(s)
Bariatric Surgery , Hyperoxaluria , Kidney Calculi , Male , Female , Humans , Case-Control Studies , Hyperoxaluria/genetics , Hyperoxaluria/complications , Bariatric Surgery/adverse effects , Kidney Calculi/complications , Weight Loss , Genetic Variation
14.
Commun Biol ; 6(1): 270, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36922584

ABSTRACT

Hyperoxaluria is well known to cause renal injury and end-stage kidney disease. Previous studies suggested that acetate treatment may improve the renal function in hyperoxaluria rat model. However, its underlying mechanisms remain largely unknown. Using an ethylene glycol (EG)-induced hyperoxaluria rat model, we find the oral administration of 5% acetate reduced the elevated serum creatinine, urea, and protected against hyperoxaluria-induced renal injury and fibrosis with less infiltrated macrophages in the kidney. Treatment of acetate in renal tubular epithelial cells in vitro decrease the macrophages recruitment which might have reduced the oxalate-induced renal tubular cells injury. Mechanism dissection suggests that acetate enhanced acetylation of Histone H3 in renal tubular cells and promoted expression of miR-493-3p by increasing H3K9 and H3K27 acetylation at its promoter region. The miR-493-3p can suppress the expression of macrophage migration inhibitory factor (MIF), thus inhibiting the macrophages recruitment and reduced oxalate-induced renal tubular cells injury. Importantly, results from the in vivo rat model also demonstrate that the effects of acetate against renal injury were weakened after blocking the miR-493-3p by antagomir treatment. Together, these results suggest that acetate treatment ameliorates the hyperoxaluria-induced renal injury via inhibiting macrophages infiltration with change of the miR-493-3p/MIF signals. Acetate could be a new therapeutic approach for the treatment of oxalate nephropathy.


Subject(s)
Acetates , Hyperoxaluria , Macrophage Migration-Inhibitory Factors , MicroRNAs , Animals , Rats , Acetates/pharmacology , Hyperoxaluria/complications , Hyperoxaluria/drug therapy , Hyperoxaluria/genetics , Intramolecular Oxidoreductases/metabolism , Kidney/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Oxalates/adverse effects
15.
J Urol ; 209(6): 1141-1150, 2023 06.
Article in English | MEDLINE | ID: mdl-36888927

ABSTRACT

PURPOSE: Hallmarks of primary hyperoxaluria type 3 are nephrolithiasis and hyperoxaluria. However, little is known about factors influencing stone formation in this disease. We characterized stone events and examined associations with urine parameters and kidney function in a primary hyperoxaluria type 3 population. MATERIALS AND METHODS: We retrospectively analyzed clinical, and laboratory data of 70 primary hyperoxaluria type 3 patients enrolled in the Rare Kidney Stone Consortium Primary Hyperoxaluria Registry. RESULTS: Kidney stones occurred in 65/70 primary hyperoxaluria type 3 patients (93%). Among the 49 patients with imaging available, the median (IQR) number of stones was 4 (2, 5), with largest stone 7 mm (4, 10) at first imaging. Clinical stone events occurred in 62/70 (89%) with median number of events per patient 3 (2, 6; range 1-49). Age at first stone event was 3 years (0.99, 8.7). Lifetime stone event rate was 0.19 events/year (0.12, 0.38) during follow-up of 10.7 (4.2, 26.3) years. Among 326 total clinical stone events, 139 (42.6%) required surgical intervention. High stone event rates persisted for most patients through the sixth decade of life. Analysis was available for 55 stones: pure calcium oxalate accounted for 69%, with mixed calcium oxalate and phosphate in 22%. Higher calcium oxalate supersaturation was associated with increased lifetime stone event rate after adjusting for age at first event (IRR [95%CI] 1.23 [1.16, 1.32]; P < .001). By the fourth decade, estimated glomerular filtration rate was lower in primary hyperoxaluria type 3 patients than the general population. CONCLUSIONS: Stones impose a lifelong burden on primary hyperoxaluria type 3 patients. Reducing urinary calcium oxalate supersaturation may reduce event frequency and surgical intervention.


Subject(s)
Hyperoxaluria, Primary , Hyperoxaluria , Kidney Calculi , Humans , Child, Preschool , Calcium Oxalate , Hyperoxaluria, Primary/epidemiology , Hyperoxaluria, Primary/complications , Retrospective Studies , Kidney Calculi/etiology , Kidney Calculi/complications , Hyperoxaluria/complications , Hyperoxaluria/epidemiology
17.
Am Surg ; 89(4): 1286-1289, 2023 Apr.
Article in English | MEDLINE | ID: mdl-33631945

ABSTRACT

Enteric hyperoxaluria (EH) is a known complication of Roux-en-Y gastric bypass (RYGB) and can lead to nephrolithiasis, oxalate-induced nephropathy, and end-stage renal disease. Recurrent EH-induced renal impairment has been reported after kidney transplantation and may lead to allograft loss. EH occurs in up to one quarter of patients following malabsorption-based bariatric operations. We present a report of medically refractory EH in a renal transplant recipient with allograft dysfunction that was successfully managed with reversal of RYGB. The patient developed renal failure 7 years following gastric bypass requiring renal transplant. Following an uneventful living donor kidney transplant, the patient developed recurrent subacute allograft dysfunction. A diagnosis of oxalate nephropathy was made based on biopsy findings of renal tubular calcium oxalate deposition in conjunction with elevated serum oxalate levels and elevated 24-hr urinary oxalate excretion. Progressive renal failure ensued despite medical management. The patient underwent reversal of her RYGB, which resulted in recovery of allograft function. This report highlights an under-recognized, potentially treatable cause of renal allograft failure in patients with underlying gastrointestinal pathology or history of bariatric surgery and proposes a strategy for management of patients with persistent hyperoxaluria based on a review of the literature.


Subject(s)
Gastric Bypass , Hyperoxaluria , Kidney Transplantation , Renal Insufficiency , Humans , Female , Gastric Bypass/adverse effects , Kidney Transplantation/adverse effects , Calcium Oxalate/urine , Oxalates , Hyperoxaluria/surgery , Hyperoxaluria/complications , Allografts
18.
Pediatr Nephrol ; 38(3): 781-789, 2023 03.
Article in English | MEDLINE | ID: mdl-35802269

ABSTRACT

BACKGROUND: For the purpose of a better understanding of enteric hyperoxaluria in Crohn's disease (CD) in children and adolescents, we investigated the occurrence and risk factors for development of hyperoxaluria in those patients. METHODS: Forty-five children with CD and another 45 controls were involved in this cross-sectional study. Urine samples were collected for measurement of spot urine calcium/creatinine (Ur Ca/Cr), oxalate/creatinine (Ur Ox/Cr), and citrate/creatinine (Ur Citr/Cr) ratios. Fecal samples were also collected to detect the oxalyl-CoA decarboxylase of Oxalobacter formigenes by PCR. Patients were classified into 2 groups: group A (with hyperoxaluria) and group B (with normal urine oxalate excretion). The disease extent was assessed, and the activity index was calculated. RESULTS: According to the activity index, 30 patients (66.7%) had mild disease and 13 patients (28.9%) had moderate disease. There was no significant difference in Ur Ox/Cr ratio regarding the disease activity index. O. formigenes was not detected in 91% of patients in group A while it was detected in all patients in group B (p < 0.001). By using logistic regression analysis, the overall model was statistically significant when compared to the null model, (χ2 (7) = 52.19, p < 0.001), steatorrhea (p = 0.004), frequent stools (p = 0.009), and O. formigenes (p < 0.001). CONCLUSION: Lack of intestinal colonization with O. formigenes, steatorrhea, and frequent stools are the main risk factors for development of enteric hyperoxaluria in CD patients. Identifying risk factors facilitates proper disease management in future studies. A higher resolution version of the Graphical abstract is available as Supplementary information.


Subject(s)
Crohn Disease , Hyperoxaluria , Steatorrhea , Adolescent , Humans , Child , Crohn Disease/complications , Crohn Disease/epidemiology , Steatorrhea/complications , Cross-Sectional Studies , Creatinine , Hyperoxaluria/complications , Hyperoxaluria/epidemiology , Risk Factors , Oxalates/urine
20.
Curr Opin Organ Transplant ; 28(1): 15-21, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36342385

ABSTRACT

PURPOSE OF REVIEW: Secondary hyperoxaluria is associated with poor kidney allograft outcomes after the kidney transplant. Calcium oxalate (CaOx) deposition is common in early allograft biopsies leading to acute tubular necrosis and poor kidney allograft function. Though treatment options for secondary hyperoxaluria are limited, it is crucial to identify patients at increased risk of oxalate nephropathy after the transplant. RECENT FINDINGS: Recent data suggest that significant changes in renal replacement therapies and dietary modifications in high-risk patients can prevent kidney allograft damage from the calcium oxalate deposition leading to improve allograft outcomes. SUMMARY: The accurate and timely diagnosis of secondary oxalate nephropathy in kidney transplant recipients is paramount to preserving graft function in the long-term. This review will discuss the incidence, risk factors, prevention, and management of oxalate nephropathy in the kidney allograft.


Subject(s)
Hyperoxaluria , Kidney Transplantation , Renal Insufficiency , Humans , Kidney Transplantation/adverse effects , Calcium Oxalate , Kidney/pathology , Hyperoxaluria/etiology , Hyperoxaluria/complications , Oxalates
SELECTION OF CITATIONS
SEARCH DETAIL
...